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Abstract
We briefly discuss the use of short-time integral propagators on solving the
so-called Vlasov–Fokker–Planck equation for the dynamics of a distribution
function. For this equation, the diffusion tensor is singular and the usual
Gaussian representation of the short-time propagator is no longer valid.
However, we prove that the path-integral approach on solving the equation
is, in fact, reliable by means of our generalized propagator, which is obtained
through the construction of an auxiliary solvable Fokker–Planck equation. The
new representation of the grid-free advancing scheme describes the inherent
cross- and self-diffusion processes, in both velocity and configuration spaces,
in a natural manner, although these processes are not explicitly depicted in
the differential equation. We also show that some splitting methods, as well
as some finite-difference schemes, could fail in describing the aforementioned
diffusion processes, governed in the whole phase space only by the velocity
diffusion tensor. The short-time transition probability offers a stable and robust
numerical algorithm that preserves the distribution positiveness and its norm,
ensuring the smoothness of the evolving solution at any time step.

PACS numbers: 02.70.Rw, 02.60.−x, 05.10.Gg, 52.65.Ff, 31.15.Kb

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Many physical systems are described by advection–diffusion equations, having the form
of the so-called Vlasov–Fokker–Planck equation (VFPE) which governs the time evolution
of a distribution or probability density function in a phase space. The scope and the
importance of this equation in many branches of physics and mathematics are beyond any doubt
[1–3]. For decades, an extensive literature dealing with solution methods for this equation
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has been developed, specially in the frame of kinetic theory, to study local and nonlocal
transport processes [4], which are of capital importance in cold and fusion plasmas. This
kind of equations also appears with different names as, for instance, the so-called nonlinear
Haı̈ssinski equation, drawing bunch processes in electron ring storages [5]. Moreover, it is
usual to find the VFPE coupled to Poisson or Maxwell equations to self-consistently describe
the nonlinear dynamics of the distribution function f [6–8]. Typically, the VFPE is written as

∂f

∂t
+ v · ∂f

∂x
+ a · ∂f

∂v
= − ∂

∂v
·
[

Dv − ∂

∂v
· Dvv

]
f (v, x, t), (1)

where a is the deterministic acceleration term, while Dv and Dvv are the drift vector and
the diffusion tensor respectively, arising from the effects of collective interactions. These
coefficients may also be functions of all the variables involved in the derivatives. Spatial
inhomogeneities are accounted for by the Vlasov term v · ∂/∂x. This equation is nothing
but a special case of a generalized Fokker–Planck equation (FPE), which may have a non-
homogeneous source term ρ, in the (N + N)-dimensional space, given by

∂f

∂t
= LFP(q, t)f (q, t) + ρ(q, t) = − ∂

∂q
·
[
A(q, t) − ∂

∂q
· D(q, t)

]
f + ρ(q, t). (2)

Here q ∈ R
N × R

N which coincides with the six components vector (v, x) for a point in
the 2N -fold phase space (v, x). The drift vector A and the symmetric diffusion tensor D

components, as well as ρ, may also depend on f through a nonlinear integro-differential
relation [5]. Thus, (1) can be cast into (2) by taking the components Dxv and Dxx of the
symmetrical diffusion tensor as zero, being A = (Av,Ax) = (a + Dv, v). Among a great
variety of solution methods [7, 9], for the last two decades, those semi-analytical approaches
aided by numerical computation have roused great interest. In this group, the path-sum,
path-integral or propagator methods describe the evolution of a distribution function by means
of an approximate propagator or Green’s function (see, for instance, [10–13] and references
therein). An interesting discussion about the physical sense of this path-integral approach
and its relation to continuous Markovian processes can also be found in the early works
[14, 15]. This propagator is usually obtained by analytical methods under the restrictive
condition of being valid for a very short-time range of the evolution. In this sense, this
method strictly combines computational and analytical efforts due to the fact that many almost
useless theoretical approximated solutions could not be directly applied without numerical
calculations. On the other hand, this integral method provides a comprehensible and suitable
approach to solve a VFPE because of its probabilistic interpretation. This makes the method
truly meaningful, robust and stable under a computational point of view. More precisely, this
approach is based upon the fact that (2) could be solved through the integral evolution equation

f (q, t) =
∫

f (q′, t ′)�(q, t | q′, t ′) dq′ +
∫

dq′
∫ t

t ′
dT ρ(q′, T )�(q, t |q′, T ), (3)

if a propagator �(q, t | q′, t ′) were known [11]. In this integral form of (2), � plays the role
of a Green’s function, under a purely analytical point of view, but it may have a probabilistic
meaning, since it could be understood as a conditional transition probability from point q′ at
time t ′ to point q at time t > t ′ [16]. Obviously, an exact propagator � cannot be found if
the equation for f is not solvable. In these cases, only approximate non-unique propagators
Pτ ≈ � can be obtained for small values of τ = t − t ′. A well-known short-time propagator
Pτ = Pτ (q, q′|t) as a transition probability from time t ′ = t to time t + τ is the multi-variate
Gaussian distribution [1], which in N-dimensional space reads

�(q, t + τ ; q′, t) ≈ Pτ = e−Q·D−1·Q/4τ /‖4πτD
′‖1/2, Q = q − q′ − τA′, (4)
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where the primed functions are computed in the source (or pre-point) variables q′, instead
of being evaluated at the field (or post-point) ones q. By ‖·‖ we denote in this paper the
determinant of a matrix. Observe that (4) demands the diffusion tensor to be invertible
(‖D‖ �= 0) which fails for the Vlasov–Fokker–Planck equation (1), since the diffusion tensor
has no xx and xv components that would explicitly describe xx self-spreading in configuration
or position space and xv cross-diffusion processes. However, the possibility of applying the
integral solution method (3) to a VPFE cannot be rejected; in fact, we shall show in this paper
that an alternative propagator can be determined by constructing an auxiliary solvable VFPE
following the method given in [17]. This procedure establishes a suitable representation of
the Dirac’s delta function, as the transition probability for τ = 0, in terms of an orthogonal
functional basis, that also leads to a representation of Pτ for a finite and small time step τ .

We will show here that such a short-time propagator exists but it has to contain powers
of τ higher than 1 to properly describe xv cross-diffusion and xx self-diffusion processes,
although neither of them is explicitly displayed in the differential form of the VFPE.

2. A simple propagator for the VFPE

As a first approach to our discussion, let us consider (1) for the (1 + 1)-dimensional case. This
is a Klein–Kramers equation [1] describing the evolution of a probability density function
f (v, x, t) for a common Brownian motion

∂f

∂t
= −v

∂f

∂x
− ∂

∂v

[
A − ∂

∂v
Dvv

]
f = Lf, A(v, x) = Dv + a(x) (5)

where Dv = −νv, the acceleration a(x) comes from a force field, while ν and Dvv = D are
two given constants. As is well known, this equation describes the evolution of the probability
density f of a system whose microdynamics is governed by a second-order Markovian process
through the Langevin equations

d

dt
(x, v) = (v,−νv + a(x) + �(t)) = (v,A(v, x) + �(t)) (6)

for the stochastic variables (x(t), v(t)). As usual [1, 18, 19], the zero-mean delta-correlated
white Gaussian noise � has intensity D = Dvv . The term A = a(x) − νv plays the role of the
effective deterministic acceleration.

Focusing now our attention on the transition probability density �, also satisfying (5) for
τ = t − t ′ > 0, we observe that, for small values of τ , the first-order moments x and v, with
respect to the transition probability �, are

v = v′ + A(v′, x ′)τ and x = x ′ + v′τ + 1
2A(v′, x ′)τ 2, (7)

as it can be directly derived from the previous Langevin equations, being also valid for any
Dv and D. We have used h = h′ for τ = 0 provided that h = ∫

h� dx dv with
∫

� dx dv = 1.
The second-order moments x2, xv and v2 can also be computed as functions of powers in τ ,
giving the non-vanishing elements σ 2

ij of the covariance matrix (σ2):

σ 2
vv = 2Dτ σ 2

xv = Dτ 2 and σ 2
xx = 2

3Dτ 3. (8)

Observe that the noise term D takes part in all diffusion processes in the whole phase space.
For a non-constant diffusion coefficient D should be replaced by D′ = Dvv(v

′, x ′, t). A simple
analysis of these relations shows that an effective spreading in configuration space takes place
as governed by a diffusion coefficient proportional to τ 2. The xv cross-diffusion processes
appear as depending on τ ; meanwhile drift effects are governed by the net acceleration A
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computed at time t. These properties strongly suggest the possibility of extending the short-
time transition probability (4)–(5) by an appropriate definition of an effective diffusion tensor,
involving components depending on τ 2 and τ 3. Note that the drift processes, related to (7),
also involve second-order powers in τ .

Therefore, the short-time transition probability density associated with (5) would have the
Gaussian form of (4) with the formal diffusion coefficients Dxv and Dxx replaced by σ 2

xv

/
2τ

and σ 2
xx

/
2τ with appropriate mean values. This fact can be easily tested by solving (5) for

the exact propagator � for t > t ′ with constants A and D. The same results hold for non-
constant coefficients if one deals with an approximate short-time propagator Pτ derived by
constructing an auxiliary VFPE, as proposed in [17]. In essence, such an auxiliary problem is
obtained by means of the Dirac delta-operator property g(q)δ(q−q′) = g1(q′)g2(q)δ(q−q′),
with δ(q − q′) = δ(v − v′)δ(x − x′). The decomposition g = g1g2 has to be applied
to g = Ai (g = Dij ) after a simple inspection that allows us to formally replace Lδ

by L∗δ. This procedure will give rise to a solvable VFPE in the form ∂Pτ /∂τ = L∗Pτ .
The most elementary operator L∗ is similar to L in (5) after having taken A and D as
constant functions (g2 = 1 for both coefficients) since they are computed in the source
variables at time t. The auxiliary equation can be solved by Fourier transforming of Pτ

as P̃ (ω, k; τ) = ∫∫
exp(−iωv − ikx)Pτ dvdx with natural boundary conditions forf in

unbounded space. Dealing now t and all primed variables as constant parameters, the
elementary Cauchy problem

∂P̃

∂τ
=

[
k

∂

∂ω
− iωA′ − ω2D′

]
P̃ ; P̃ (τ = 0) = e−iωv′−ikx ′

(9)

is solvable by the method of characteristics, giving

P̃ = exp

[
−τD′

3
(k2τ 2 + 3ωkτ + 3ω2) − iω(v′ + A′τ) − ik

(
x ′ + v′τ +

1

2
A′τ 2

)]
(10)

and finally, after Fourier inversion, we have

Pτ =
√

3

2πτ 2D′ exp

[
− 1

D′τ

(
3
X2

τ 2
− 3

XV

τ
+ V 2

)]
. (11)

This simple expression for Pτ can be recast as a product of two one-dimensional probability
transition functions as

Pτ = e− 1
Dτ

(V − 3
2τ

X)2

√
πDτ

e− 3
4Dτ3 X2√

4πDτ 3/3
= e− 1

4Dτ
V 2

√
4πDτ

e− 3
Dτ3 (X−τV/2)2√
πDτ 3/3

. (12)

Here, we have defined V = v − v and X = x − x, in view of (7) and (10). This solution
clearly illustrates the above discussion about xv cross-diffusion and xx self-diffusion as two
processes intrinsically governed by the velocity diffusion tensor. At the same time, we recall
that the drift in phase space is described by v and x for small τ . These two terms have
a clear unambiguous physical meaning because both of them are intrinsically related to the
phase-space deterministic trajectories in the short-time regime. The advection and diffusion
processes in configuration space are clearly described by the reduced distribution Pτ (x, x ′),

Pτ (x, x ′) =
√

3

4πD′τ 3
exp

[
− 3

4D′τ 3

(
x − x ′ − v′τ − 1

2
A′τ 2

)2
]

, (13)

found after integrating Pτ over v. This marginal probability transition has the form of the
usual Gaussian distribution with an effective diffusion coefficient Dxx = D′

vvτ
2/3. However,

because of the non-unique nature of Pτ [1, 15] one can explore the possibility of finding another
propagator for which xx self-diffusion in the reduced x space does not appear explicitly.
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In truth, if v∂/∂xδ(v − v′) in L∗δ is rewritten as v′∂/∂xδ(v − v′), an alternative propagator is
obtained as

P II
τ = 1√

4πD′τ
exp

[
− V 2

4D′τ

]
δ(x − x ′ − v′τ). (14)

This new Green’s function can be understood as a degenerated Guassian distribution coming
from (11) after computing the limit τ 3 → 0 keeping τ finite. With (14) the integral advancing
scheme can be seen as a splitting procedure. Here, the integral over x ′ can be performed
analytically yielding to a simple drift in x space. This splitting operator depending on a Dirac
delta function is not unique but, in any case, the apparent suppression of the diffusive effects in
real space may cause the numerical advancing scheme to destroy the distribution smoothness.

The previous results can be extrapolated to the general case of a Vlasov–Fokker–Planck
equation in (N + N)-dimensional phase space. Although N � 3 in most cases, of physical
interest, it is useful to give a suitable expression for Pτ in this 2N -fold space that could be
simplified if geometrical or physical properties can be invoked to reduce the dimensionality
of the general problem. In such a case, f becomes homogenous with respect to one or several
variables and the form of Pτ is simplified by integrating over the set of variables not appearing
in f . In this sense, we stress that for space homogenous problems v · ∂f/∂x disappears and
the aforementioned integration can be carried out over x in Pτ , to get a propagator depending
on velocity variables.

Hence, let us now consider the (N + N)-fold case of (1) for v ∈ R
N and x ∈ R

N rewritten
as

∂f

∂t
= −

[
∂

∂x
· v +

∂

∂v
· (Dv + a) − ∂

∂v
· Dvv

]
f = Lf (v, x, t), (15)

where we have assumed that the acceleration a = a(x, v, t) satisfies ∂
∂v · a = 0. In the

notation of (2) q = (v, x) is, more explicitly, the vector (q1, . . . , qN , qN+1, . . . , q2N) =
(v1, . . . , vN , x1, . . . , xN), with Avi

= Ai = Dvi
+ ai,Axi

= vi and Dxivj
= Dxixj

= 0. We can
now define

L∗ = −v · ∂

∂x
− ∂

∂v
·
[

A′ − ∂

∂v
· D

′
]

(16)

as the simplest auxiliary operator L∗ to obtain a short-time propagator similar to (11). Note
that the vector A′ coincides with Dv + a computed on primed variables. The elements of the
N × N tensor D

′, with Dij = Dvivj , are also evaluated in the source variables. After Fourier
transforming the equation ∂Pτ/∂τ = L∗Pτ , we find for Pτ the non-degenerated Gaussian
distribution

Pτ ( v, x; v′, x′|t) = 1

(2π)N
√

‖(σ2)‖
exp

[
−1

2
(q − q) · (σ2)−1 · (q − q)

]
(17)

where the mean q is

(v, x) = (v′ + A′τ, x′ + v′τ + 1
2 A′τ 2) (18)

and the 2N × 2N non-singular covariance tensor has the 2 × 2 block matrix structure

(σ2) =
(

(σ2)vv (σ2)vx

(σ2)xv (σ2)xx

)
=

(
2τD

′ τ 2
D

′

τ 2
D

′ 2
3τ 3

D
′

)
(19)

with determinant ‖(σ2)‖ = τ 4ND2
t

/
3N , where Dt = ‖D

′‖. As expected, Pτ clearly expresses
how cross- and self-diffusion processes are driven by the velocity diffusion coefficients,
whereas drifting obeys a simple deterministic motion of a particle in phase space for a finite
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time interval τ . The approximate probability transition can be decomposed as the product of
two distributions Pv and Px, each one acting in a N-dimensional space, as

Pτ = Pv(v, v′|x′)Px(x, x′|vm), (20)

where we have defined vm = (v + v′)/2 and

Pv =
√

1

(4πτ)N Dt

exp

[
−V · D

′−1 · V
4τ

]
, Px =

√(
3

πτ 3

)N 1

Dt

exp

[
−3

Z · D
′−1 · Z

τ 3

]

(21)

with V = v − v′ − A′τ and Z = x − x′ − vmτ .
It must be underlined that Pv depends on x′ through A′. If this short-time propagator, only

working on the reduced velocity space, can be obtained for the Fokker–Planck equation without
the Vlasov term, the full Pτ can be generated by a simple product expressed above, where
the part Px is constructed with the effective diffusion tensor τ 2

D
′/12 as a first approximation.

Moreover, Px contains the drag effects in the configuration x space through the deterministic
part x − x in the Z variables. This also suggests that the method in constructing this part of
the integral operator can be combined with Montecarlo or deterministic methods [6, 7] by
simply replacing x ′

k + vMkτ and v′
k + A′

kτ by the deterministic solution of the classical motion
equations in terms of τ instead of t. It has to be emphasized that the form of the auxiliary
operator L∗ and, consequently Pτ , is not unique. This allows us to choose another one, leading
to a more suitable integral operator consistent with the properties of the real VFPE operator.

On the other hand, the treatment of prescribed boundary conditions can be performed as
proposed in [11]. In this work, the boundary conditions are incorporated in a surface integral
involving only Pτ for unbounded space and its derivatives. To end with this section let us note
that the procedure to get a meaningful Pτ is also applicable to any Fokker–Planck equation
having a singular diffusion tensor, by an appropriate construction of L∗ leading to a solvable
auxiliary VFPE.

3. Application to a Brownian motion

As a simple application to solve a VFPE let us consider the study of the probability density
evolution associated with a well-known Brownian motion equation for an ensemble of
interacting particles, as in a collisional plasma, in the presence of a harmonic force field.
The equation has the form of (5) for f (v, x, t). The external deterministic acceleration is
a(x) = −ω2x and the friction force coming from the collective interaction is Dv = −νv. In
this case, the problem is analytically solvable for both transient and steady states [3, 8] having
the stationary solution

fs(v, x) = N exp
[
− ν

2D
(v2 + ω2x2)

]
, (v, x) ∈ R × R, (22)

whereN is a normalization constant. We examine the evolution of f by numerically computing
the grid-free path-integral scheme (3) using and comparing both split propagators (14) and
(12). From the theoretical point of view, these propagators should be equivalent to finding
an analytical expression, from which f could be extracted by evaluating the limits n → ∞
and τ → 0 for a fixed t = nτ . However, our purpose is to describe f at any time step when
Pτ is used replacing the unknown exact propagator �. Therefore, it is presumable that such
an equivalence among all short-time Green’s functions does not hold in describing numerical
solutions. By a simple integration with a short-time propagator, f can be advanced in time
from any initial condition, here a histogram-type distribution, preserving the norm and the
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Figure 1. Contour levels and distribution function f profiles for a Brownian motion. (A) the
convective propagator without explicit xv and xx diffusive terms is used. Here, a misleading non-
smooth steady-state distribution is obtained. (B) The same problem is solved when f is advanced
in time with the full short-time propagator (12). In this case, the expected numerical Gaussian
distribution is obtained for any initial condition f (v, x, 0).

non-negative nature of f . First, apply the split operator (14) that has no explicit description of
both cross- and self-diffusion processes. This short-time probability transition function gives
the advancing scheme

f (v, x, t + τ) =
∫

Pv(v, v′|x − v′τ)f (v′, x − v′τ, t) dv′, (23)

which can be understood as a simple explicit finite-difference scheme with respect to x,
related to v∂f/∂x, because its action is a drifting of the information contained in f (v, x, t) by
translation from the cell x = xi to a new cell xj associated with x − v′τ . A similar integral
operator, which only attends to the drift processes in real configuration space, can be found
in [20] for convection-dominated transport. The reduction of the propagator techniques to a
finite-difference method for small time steps is briefly commented in [12]. Hence, all the values
of f in every position x − v′τ should be computed before performing the integration over v′

with Pv . However, for τv′ larger than the grid length �x, the loss of information is unavoidable
in a finite computational domain, because f could not be defined for certain positions. This
fact enforces us to take a very small time step to prevent this loss of information throughout
the iterative process. Any way, this method only describes advective effects in x, driving
the solution to nonphysical behaviour, as shown in the figure. Surprisingly, the transient
and steady-state solutions strongly depend on the initial distribution f (v, x, 0). Since the
main advantage of the path-sum solution is the possibility of taking large time steps, it is
indispensable to use the full expression (11) or its split form (12). When this operator is used,
the smoothness of f is preserved from the first iteration for any τ . A physically acceptable
evolution is found. Now, the convective and diffusive processes are properly described until
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the expected steady state is reached, as shown in the last three frames in the figure. In all the
cases, the time step is about 1/10 of the relaxation time 1/ν. The integrals are performed by
a simple midpoint rule over a uniform 40 × 80 grid in a (−5, 5) × (−5, 5) finite domain. The
computation takes about 5 s in a 2.8 GHz PC.

As a conclusion, we can assert that the application of (14) leads to misleading results
in the description of f , because cross-diffusion and self-diffusion in xv and xx spaces are
explicitly dropped as a consequence of having neglected τ 3 which is also finite in a numerical
integration scheme. In contrast, when the Gaussian short-time transition probability (12) is
used, there is no appreciable difference with the analytical results. Although both approaches
deal with split operators, the splitting method has to contain all diffusion processes in each
operator to avoid the loss of information to preserve a physically meaningful evolution of f .
In this sense, any splitting method on solving the Vlasov–Fokker–Planck equation, based on
advancing in time the diffusive part in velocity space and drifting the resulting function in
configuration space, could cause an improper description of transient and steady states.
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